
NAG C Library Function Document

nag_pde_parab_1d_coll (d03pdc)

1 Purpose

nag_pde_parab_1d_coll (d03pdc) integrates a system of linear or nonlinear parabolic partial differential

equations (PDEs) in one space variable. The spatial discretisation is performed using a Chebyshev C0

collocation method, and the method of lines is employed to reduce the the PDEs to a system of ordinary
differential equations (ODEs). The resulting system is solved using a backward differentiation formula
method.

2 Specification

void nag_pde_parab_1d_coll (Integer npde, Integer m, double *ts, double tout,

void (*pdedef)(Integer npde, double t, const double x[], Integer nptl,
const double u[], const double ux[], double p[], double q[], double r[],
Integer *ires, Nag_Comm *comm),

void (*bndary)(Integer npde, double t, const double u[], const double ux[],
Integer ibnd, double beta[], double gamma[], Integer *ires,
Nag_Comm *comm),

double u[], Integer nbkpts, const double xbkpts[], Integer npoly, Integer npts,
double x[],

void (*uinit)(Integer npde, Integer npts, const double x[], double u[],
Nag_Comm *comm),

double acc, double rsave[], Integer lrsave, Integer isave[], Integer lisave,
Integer itask, Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_coll (d03pdc) integrates the system of parabolic equations:

Xnpde

j¼1

Pi;j

@Uj

@t
þQi ¼ x�m @

@x
ðxmRiÞ; i ¼ 1; 2; . . . ; npde; a � x � b; t � t0; ð1Þ

where Pi;j, Qi and Ri depend on x, t, U , Ux and the vector U is the set of solution values

Uðx; tÞ ¼ ½U1ðx; tÞ; . . . ; Unpdeðx; tÞ�T; ð2Þ

and the vector Ux is its partial derivative with respect to x. Note that Pi;j, Qi and Ri must not depend on

ð@UÞ=ð@tÞ.
The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnbkpts

are the leftmost and rightmost of a user-defined set of break-points x1; x2; . . . ; xnbkpts. The co-ordinate

system in space is defined by the value of m; m ¼ 0 for Cartesian co-ordinates, m ¼ 1 for cylindrical
polar co-ordinates and m ¼ 2 for spherical polar co-ordinates.

The system is defined by the functions Pi;j, Qi and Ri which must be specified in a function pdedef

supplied by the user.

The initial values of the functions Uðx; tÞ must be given at t ¼ t0, and must be specified in a function
uinit.

The functions Ri, for i ¼ 1; 2; . . . ; npde, which may be thought of as fluxes, are also used in the definition
of the boundary conditions for each equation. The boundary conditions must have the form

d03 – Partial Differential Equations d03pdc

[NP3645/7] d03pdc.1

�iðx; tÞRiðx; t; U; UxÞ ¼ �iðx; t; U; UxÞ; i ¼ 1; 2; . . . ;npde; ð3Þ
where x ¼ a or x ¼ b.

The boundary conditions must be specified in a function bndary provided by the user. Thus, the problem
is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;

(ii) Pi;j, Qi and the flux Ri must not depend on any time derivatives;

(iii) the evaluation of the functions Pi;j, Qi and Ri is done at both the break-points and internally selected

points for each element in turn, that is Pi;j, Qi and Ri are evaluated twice at each break-point. Any

discontinuities in these functions must therefore be at one or more of the break-points
x1; x2; . . . ; xnbkpts;

(iv) at least one of the functions Pi;j must be non-zero so that there is a time derivative present in the

problem;

(v) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or by
specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 8 below.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at the mesh
points. This ODE system is obtained by approximating the PDE solution between each pair of break-
points by a Chebyshev polynomial of degree npoly. The interval between each pair of break-points is
treated by nag_pde_parab_1d_coll (d03pdc) as an element, and on this element, a polynomial and its space
and time derivatives are made to satisfy the system of PDEs at npoly� 1 spatial points, which are chosen
internally by the code and the break-points. In the case of just one element, the break-points are the
boundaries. The user-defined break-points and the internally selected points together define the mesh. The
smallest value that npoly can take is one, in which case, the solution is approximated by piecewise linear
polynomials between consecutive break-points and the method is similar to an ordinary finite element
method.

In total there are ðnbkpts� 1Þ � npolyþ 1 mesh points in the spatial direction, and
npde� ððnbkpts� 1Þ � npolyþ 1Þ ODEs in the time direction; one ODE at each break-point for each
PDE component and (npoly� 1) ODEs for each PDE component between each pair of break-points. The
system is then integrated forwards in time using a backward differentiation formula method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software

Systems (ed J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178–206

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel
by a suction at porous walls Fluid Dynamics Research 4

5 Parameters

1: npde – Integer Input

On entry: the number of PDEs in the system to be solved.

Constraint: npde � 1.

2: m – Integer Input

On entry: the co-ordinate system used:

d03pdc NAG C Library Manual

d03pdc.2 [NP3645/7]

m ¼ 0

Indicates Cartesian co-ordinates.

m ¼ 1

Indicates cylindrical polar co-ordinates.

m ¼ 2

Indicates spherical polar co-ordinates.

Constraint: 0 � m � 2.

3: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

4: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

5: pdedef Function

pdedef must compute the values of the functions Pi;j, Qi and Ri which define the system of PDEs.

The functions may depend on x, t, U and Ux and must be evaluated at a set of points.

void pdedef (Integer npde, double t, const double x[], Integer nptl,
const double u[], const double ux[], double p[], double q[], double r[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x½nptl� – const double Input

On entry: contains a set of mesh points at which Pi;j, Qi and Ri are to be evaluated. x½0]
and x½nptl� 1] contain successive user-supplied break-points and the elements of the
array will satisfy x½0� < x½1� < � � � < x½nptl� 1�.

4: nptl – Integer Input

On entry: the number of points at which evaluations are required (the value of npolyþ 1).

5: u½npde� nptl� – const double Input

Note: where Uði; jÞ appears in this document it refers to the array element

u½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

On entry: Uði; jÞ contains the value of the component Uiðx; tÞ where x ¼ x½j� 1�, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nptl.

6: ux½npde� nptl� – const double Input

Note: where UXði; jÞ appears in this document it refers to the array element

ux½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

d03 – Partial Differential Equations d03pdc

[NP3645/7] d03pdc.3

On entry: UXði; jÞ contains the value of the component ð@Uiðx; tÞÞ=ð@xÞ where
x ¼ x½j� 1�, for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ;nptl.

7: p½npde� npde� nptl� – double Output

Note: where Pði; j; kÞ appears in this document it refers to the array element

p½npde� ðnpde� ðk� 1Þ þ j� 1Þ þ i� 1�. We recommend using a #define to make the

same definition in your calling program.

On exit: Pði; j; kÞ must be set to the value of Pi;jðx; t; U; UxÞ where x ¼ x½k� 1�, for
i; j ¼ 1; 2; . . . ; npde; k ¼ 1; 2; . . . ; nptl.

8: q½npde� nptl� – double Output

Note: where Qði; jÞ appears in this document it refers to the array element

q½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

On exit: Qði; jÞ must be set to the value of Qiðx; t; U; UxÞ where x ¼ x½j� 1�, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nptl.

9: r½npde� nptl� – double Output

Note: where Rði; jÞ appears in this document it refers to the array element

r½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

On exit: Rði; jÞ must be set to the value of Riðx; t; U; UxÞ where x ¼ x½j� 1�, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nptl.

10: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_coll (d03pdc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

11: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

6: bndary Function

bndary must compute the functions �i and �i which define the boundary conditions as in equation
(3).

void bndary (Integer npde, double t, const double u[], const double ux[],
Integer ibnd, double beta[], double gamma[], Integer *ires,
Nag_Comm *comm)

d03pdc NAG C Library Manual

d03pdc.4 [NP3645/7]

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Uiðx; tÞ at the boundary specified
by ibnd, for i ¼ 1; 2; . . . ; npde.

4: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component ð@Uiðx; tÞÞ=ð@xÞ at the boundary
specified by ibnd, for i ¼ 1; 2; . . . ; npde.

5: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated. If ibnd ¼ 0, then
bndary must set up the coefficients of the left-hand boundary, x ¼ a. If ibnd 6¼ 0, then
bndary must set up the coefficients of the right-hand boundary, x ¼ b.

6: beta½npde� – double Output

On exit: beta½i� 1� must be set to the value of �iðx; tÞ at the boundary specified by ibnd,
for i ¼ 1; 2; . . . ; npde.

7: gamma½npde� – double Output

On exit: gamma½i� 1� must be set to the value of �iðx; t; U; UxÞ at the boundary specified
by ibnd, for i ¼ 1; 2; . . . ; npde.

8: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_coll (d03pdc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

9: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

7: u½npde� npts� – double Input/Output

Note: where Uði; jÞ appears in this document it refers to the array element u½npde� ðj� 1Þ þ i� 1�.
We recommend using a #define to make the same definition in your calling program.

On entry: if ind ¼ 1 the value of u must be unchanged from the previous call.

On exit: Uði; jÞ will contain the computed solution at t ¼ ts.

d03 – Partial Differential Equations d03pdc

[NP3645/7] d03pdc.5

8: nbkpts – Integer Input

On entry: the number of break-points in the interval ½a; b�.
Constraint: nbkpts � 2.

9: xbkpts½nbkpts� – const double Input

On entry: the values of the break-points in the space direction. xbkpts½0] must specify the left-hand
boundary, a, and xbkpts½nbkpts� 1] must specify the right-hand boundary, b.

Constraint: xbkpts½0� < xbkpts½1� < � � � < xbkpts½nbkpts� 1�.

10: npoly – Integer Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break-points.

Constraint: 1 � npoly � 49.

11: npts – Integer Input

On entry: the number of mesh points in the interval ½a; b�.
Constraint: npts ¼ ðnbkpts� 1Þ � npolyþ 1.

12: x½npts� – double Output

On exit: the mesh points chosen by nag_pde_parab_1d_coll (d03pdc) in the spatial direction. The
values of x will satisfy x½0� < x½1� < � � � < x½npts� 1�.

13: uinit Function

uinit must compute the initial values of the PDE components Uiðxj; t0Þ, for i ¼ 1; 2; . . . ; npde;
j ¼ 1; 2; . . . ; npts.

void uinit (Integer npde, Integer npts, const double x[], double u[],
Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval ½a; b�.

3: x½npts� – const double Input

On entry: x½j� 1�, contains the values of the jth mesh point, for j ¼ 1; 2; . . . ; npts.

4: u½npde� npts� – double Output

Note: where Uði; jÞ appears in this document it refers to the array element

u½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

On exit: Uði; jÞ must be set to the initial value Uiðxj; t0Þ, for i ¼ 1; 2; . . . ; npde;
j ¼ 1; 2; . . . ; npts.

5: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

d03pdc NAG C Library Manual

d03pdc.6 [NP3645/7]

14: acc – double Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
Eði; jÞ is the estimated error for Ui at the jth mesh point, the error test is:

jEði; jÞj ¼ acc� ð1:0þ jUði; jÞjÞ:
Constraint: acc > 0:0.

15: rsave½lrsave� – double Input/Output

On entry: if ind ¼ 0, rsave need not be set. If ind ¼ 1 then it must be unchanged from the
previous call to the function.

On exit: contains information about the iteration required for subsequent calls.

16: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_coll (d03pdc) is called.

Constraint: lrsave � 11� npde� nptsþ 50þ nwkresþ lenode, where

nwkres ¼ 3� ðnpolyþ 1Þ2 þ ðnpolyþ 1Þ � ðnpde2 þ 6� npdeþ nbkptsþ 1Þ þ
13� npdeþ 5, and lenode ¼ npde� npts� ð3� npde� ðnpolyþ 1Þ � 2Þ.

17: isave½lisave� – Integer Input/Output

On entry: if ind ¼ 0, isave need not be set. If ind ¼ 1 then it must be unchanged from the previous
call to the function.

On exit: contains information about the iteration required for subsequent calls. In particular:

isave½0] contains the number of steps taken in time.

isave½1] contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation
of the functions in the boundary conditions.

isave½2] contains the number of Jacobian evaluations performed by the time integrator.

isave½3] contains the order of the last backward differentiation formula method used.

isave½4] contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU decomposition
of the Jacobian matrix.

18: lisave – Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde_parab_1d_coll (d03pdc) is called.

Constraint: lisave � npde� nptsþ 24.

19: itask – Integer Input

On entry: specifies the task to be performed by the ODE integrator. The permitted values of itask
and their meanings are detailed below:

itask ¼ 1

Normal computation of output values u at t ¼ tout.

itask ¼ 2

One step and return.

itask ¼ 3

Stop at first internal integration point at or beyond t ¼ tout.

Constraint: 1 � itask � 3.

d03 – Partial Differential Equations d03pdc

[NP3645/7] d03pdc.7

20: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_coll (d03pdc) and the
underlying ODE solver. itrace may take the value �1, 0, 1, 2, or 3. If itrace < �1, then �1 is
assumed and similarly if itrace > 3, then 3 is assumed. If itrace ¼ �1, no output is generated. If
itrace ¼ 0, only warning messages from the PDE solver are printed. If itrace > 0, then output
from the underlying ODE solver is printed. This output contains details of Jacobian entries, the
nonlinear iteration and the time integration during the computation of the ODE system. The
advisory messages are given in greater detail as itrace increases.

21: outfile – char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

22: ind – Integer * Input/Output

On entry: ind must be set to 0 or 1.

ind ¼ 0

Starts or restarts the integration in time.

ind ¼ 1

Continues the integration after an earlier exit from the function. In this case, only the
parameters tout and fail should be reset between calls to nag_pde_parab_1d_coll (d03pdc).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

23: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

24: saved – Nag_D03_Save * Input/Output

Note: saved is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.

On entry: if the current call to nag_pde_parab_1d_coll (d03pdc) follows a previous call to a
Chapter d03 function then saved must contain the unchanged value output from that previous call.

On exit: data to be passed unchanged to any subsequent call to a Chapter d03 function.

25: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, npde = hvaluei.
Constraint: npde � 1.

On entry, nbkpts = hvaluei.
Constraint: nbkpts � 2.

On entry, npoly = hvaluei.
Constraint: 1 � npoly � 49.

On entry, npoly ¼ hvaluei.
Constraint: npoly � 49.

On entry, npoly ¼ hvaluei.
Constraint: npoly � 1.

d03pdc NAG C Library Manual

d03pdc.8 [NP3645/7]

On entry, ind is not equal to 0 or 1: ind ¼ hvaluei.
ires set to an invalid value in call to pdedef or bndary.

On entry, m is not equal to 0, 1, or 2: m ¼ hvaluei.
On entry, itask is not equal to 1, 2, or 3: itask ¼ hvaluei.

NE_INT_2

On entry, lrsave is too small: lrsave ¼ hvaluei. Minimum possible dimension: hvaluei.
On entry, lisave is too small: lisave ¼ hvaluei. Minimum possible dimension: hvaluei.

NE_INT_3

On entry, npts = hvaluei, nbkpts = hvaluei, npoly = hvaluei.
Constraint: npts ¼ ðnbkpts� 1Þ � npolyþ 1.

On entry, npts is not equal to ðnbkpts� 1Þ � npolyþ 1: npts ¼ hvaluei, nbkpts ¼ hvaluei,
npoly ¼ hvaluei.

NE_ACC_IN_DOUBT

Integration completed, but a small change in acc is unlikely to result in a changed solution.
acc ¼ hvaluei.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could
be due to user setting ires ¼ 3 in pdedef or bndary.

NE_FAILED_START

acc was too small to start integration: acc ¼ hvaluei.

NE_FAILED_STEP

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ hvaluei.
Error during Jacobian formulation for ODE system. Increase itrace for further details.

Underlying ODE solver cannot make further progress from the point ts with the supplied value of
acc. ts ¼ hvaluei, acc ¼ hvaluei.

NE_INCOMPAT_PARAM

On entry, m > 0 and xbkpts½0� < 0:0: m ¼ hvaluei, xbkpts½0� ¼ hvaluei.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NOT_STRICTLY_INCREASING

On entry, break points xbkpts are badly ordered: i ¼ hvaluei, xbkpts½i� 1� ¼ hvaluei j ¼ hvaluei,
xbkpts½j� 1� ¼ hvaluei.

NE_REAL

On entry, acc ¼ hvaluei.
Constraint: acc > 0:0.

NE_REAL_2

On entry, tout� ts is too small: tout ¼ hvaluei, ts ¼ hvaluei.

d03 – Partial Differential Equations d03pdc

[NP3645/7] d03pdc.9

On entry, tout � ts: tout ¼ hvaluei, ts ¼ hvaluei.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef or bndary. Integration is
successful as far as ts: ts ¼ hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file hvaluei for writing.

NE_NOT_CLOSE_FILE

Cannot close file hvaluei.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The function controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on the degree of the polynomial approximation
npoly, and on both the number of break-points and on their distribution in space. In the time integration
only the local error over a single step is controlled and so the accuracy over a number of steps cannot be
guaranteed. The user should therefore test the effect of varying the accuracy parameter, acc.

8 Further Comments

The function is designed to solve parabolic systems (possibly including elliptic equations) with second-
order derivatives in space. The parameter specification allows the user to include equations with only first-
order derivatives in the space direction but there is no guarantee that the method of integration will be
satisfactory for such systems. The position and nature of the boundary conditions in particular are critical
in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

9 Example

The problem consists of a fourth-order PDE which can be written as a pair of second-order elliptic-
parabolic PDEs for U1ðx; tÞ and U2ðx; tÞ,

0 ¼ @2U1

@x2
� U2 ð4Þ

d03pdc NAG C Library Manual

d03pdc.10 [NP3645/7]

@U2

@t
¼ @2U2

@x2
þ U2

@U1

@x
� U1

@U2

@x
ð5Þ

where �1 � x � 1 and t � 0. The boundary conditions are given by

@U1

@x
¼ 0 and U1 ¼ 1 at x ¼ �1; and

@U1

@x
¼ 0 and U1 ¼ �1 at x ¼ 1:

The initial conditions at t ¼ 0 are given by

U1 ¼ � sin
�x

2
and U2 ¼

�2

4
sin

�x

2
:

The absence of boundary conditions for U2ðx; tÞ does not pose any difficulties provided that the derivative
flux boundary conditions are assigned to the first PDE (4) which has the correct flux, ð@U1Þ=ð@xÞ. The
conditions on U1ðx; tÞ at the boundaries are assigned to the second PDE by setting �2 ¼ 0:0 in equation
(3) and placing the Dirichlet boundary conditions on U1ðx; tÞ in the function �2.

9.1 Program Text

/* nag_pde_parab_1d_coll (d03pdc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

static void uinit(Integer, Integer, const double[], double[], Nag_Comm *);

static void pdedef(Integer, double, const double[], Integer, const double[],
const double[], double[], double[], double[], Integer *,
Nag_Comm *);

static void bndary(Integer, double, const double[], const double[], Integer,
double[], double[], Integer *, Nag_Comm *);

#define U(I,J) u[npde*((J)-1)+(I)-1]
#define UOUT(I,J,K) uout[npde*(intpts*((K)-1)+(J)-1)+(I)-1]
#define P(I,J,K) p[npde*(npde*((K)-1)+(J)-1)+(I)-1]
#define Q(I,J) q[npde*((J)-1)+(I)-1]
#define R(I,J) r[npde*((J)-1)+(I)-1]
#define UX(I,J) ux[npde*((J)-1)+(I)-1]

int main(void)
{

const Integer nbkpts=10, nelts=nbkpts-1, npde=2, npoly=3,
m=0, itype=1, npts=nelts*npoly+1, neqn=npde*npts,
intpts=6, npl1=npoly+1, lisave=neqn+24,
mu=npde*(npoly+1)-1, lenode=(3*mu+1)*neqn,
nwkres=3*npl1*npl1+npl1*(npde*npde+6*npde+nbkpts+1)
+13*npde+5, lrsave=11*neqn+50+nwkres+lenode;

static double xout[6] = { -1.,-.6,-.2,.2,.6,1. };
double acc, tout, ts, piby2;
Integer exit_status, i, ind, it, itask, itrace;

double *rsave=0, *u=0, *uout=0, *x=0, *xbkpts=0;
Integer *isave=0;

d03 – Partial Differential Equations d03pdc

[NP3645/7] d03pdc.11

NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xbkpts = NAG_ALLOC(nbkpts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

INIT_FAIL(fail);
exit_status = 0;

Vprintf("d03pdc Example Program Results\n\n");

piby2 = 0.5*nag_pi;
acc = 1e-4;
itrace = 0;

/* Set the break-points */

for (i = 0; i < 10; ++i)
{

xbkpts[i] = i*2.0/9.0- 1.0;
}

ind = 0;
itask = 1;
ts = 0.0;
tout = 1e-5;
Vprintf(" Polynomial degree =%4ld", npoly);
Vprintf(" No. of elements = %4ld\n\n", nelts);
Vprintf(" Accuracy requirement = %9.3e", acc);
Vprintf(" Number of points = %5ld\n\n", npts);
Vprintf(" t / x ");

for (i = 0; i < 6; ++i)
{

Vprintf("%8.4f", xout[i]);
Vprintf((i+1)%6 == 0 || i == 5 ?"\n":"");

}
Vprintf("\n");

/* Loop over output values of t */

for (it = 0; it < 5; ++it)
{

tout *= 10.0;

d03pdc(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
xbkpts, npoly, npts, x, uinit, acc, rsave, lrsave,
isave, lisave, itask, itrace, 0, &ind, &comm,
&saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03pdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Interpolate at required spatial points */

d03pdc NAG C Library Manual

d03pdc.12 [NP3645/7]

d03pyc(npde, u, nbkpts, xbkpts, npoly, npts, xout, intpts,
itype, uout, rsave, lrsave, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03pyc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\n %6.4f u(1)", tout);

for (i = 1; i <= 6; ++i)
{

Vprintf("%8.4f", UOUT(1,i,1));
Vprintf(i%6 == 0 || i == 6 ?"\n":"");

}

Vprintf(" u(2)");

for (i = 1; i <= 6; ++i)
{

Vprintf("%8.4f", UOUT(2,i,1));
Vprintf(i%6 == 0 || i == 6 ?"\n":"");

}
}

/* Print integration statistics */

Vprintf("\n");
Vprintf(" Number of integration steps in time ");
Vprintf("%4ld\n",isave[0]);
Vprintf(" Number of residual evaluations of resulting ODE system ");
Vprintf("%4ld\n",isave[1]);
Vprintf(" Number of Jacobian evaluations ");
Vprintf("%4ld\n",isave[2]);
Vprintf(" Number of iterations of nonlinear solver ");
Vprintf("%4ld\n",isave[4]);

END:
if (rsave) NAG_FREE(rsave);
if (u) NAG_FREE(u);
if (uout) NAG_FREE(uout);
if (x) NAG_FREE(x);
if (xbkpts) NAG_FREE(xbkpts);
if (isave) NAG_FREE(isave);

return exit_status;
}

static void uinit(Integer npde, Integer npts, const double x[],
double u[], Nag_Comm *comm)

{
Integer i;
double piby2;

piby2 = 0.5*nag_pi;
for (i = 1; i <= npts; ++i)

{
U(1, i) = -sin(piby2*x[i-1]);
U(2, i) = -piby2*piby2*U(1, i);

}
return;

}

static void pdedef(Integer npde, double t, const double x[], Integer nptl,
const double u[], const double ux[], double p[],
double q[], double r[], Integer *ires, Nag_Comm *comm)

{
Integer i;

d03 – Partial Differential Equations d03pdc

[NP3645/7] d03pdc.13

for (i = 1; i <= nptl; ++i)
{

Q(1, i) = U(2, i);
Q(2, i) = U(1, i)*UX(2, i) - UX(1, i)*U(2, i);
R(1, i) = UX(1, i);
R(2, i) = UX(2, i);
P(1, 1, i) = 0.0;
P(1, 2, i) = 0.0;
P(2, 1, i) = 0.0;
P(2, 2, i) = 1.0;

}
return;

}

static void bndary(Integer npde, double t, const double u[],
const double ux[], Integer ibnd, double beta[],
double gamma[], Integer *ires, Nag_Comm *comm)

{
if (ibnd == 0)

{
beta[0] = 1.0;
gamma[0] = 0.0;
beta[1] = 0.0;
gamma[1] = u[0] - 1.0;

}
else

{
beta[0] = 1.0;
gamma[0] = 0.0;
beta[1] = 0.0;
gamma[1] = u[0] + 1.0;

}
return;

}

9.2 Program Data

None.

9.3 Program Results

d03pdc Example Program Results

Polynomial degree = 3 No. of elements = 9

Accuracy requirement = 1.000e-04 Number of points = 28

t / x -1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000

0.0001 u(1) 1.0000 0.8090 0.3090 -0.3090 -0.8090 -1.0000
u(2) -2.4850 -1.9957 -0.7623 0.7623 1.9957 2.4850

0.0010 u(1) 1.0000 0.8085 0.3088 -0.3088 -0.8085 -1.0000
u(2) -2.5583 -1.9913 -0.7606 0.7606 1.9913 2.5583

0.0100 u(1) 1.0000 0.8051 0.3068 -0.3068 -0.8051 -1.0000
u(2) -2.6962 -1.9481 -0.7439 0.7439 1.9481 2.6962

0.1000 u(1) 1.0000 0.7951 0.2985 -0.2985 -0.7951 -1.0000
u(2) -2.9022 -1.8339 -0.6338 0.6338 1.8339 2.9022

1.0000 u(1) 1.0000 0.7939 0.2972 -0.2972 -0.7939 -1.0000
u(2) -2.9233 -1.8247 -0.6120 0.6120 1.8247 2.9233

Number of integration steps in time 50
Number of residual evaluations of resulting ODE system 407
Number of Jacobian evaluations 18
Number of iterations of nonlinear solver 122

d03pdc NAG C Library Manual

d03pdc.14 (last) [NP3645/7]

	d03pdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	npde
	m
	ts
	tout
	pdedef
	npde
	t
	x
	nptl
	u
	ux
	p
	q
	r
	ires
	comm

	bndary
	npde
	npde
	t
	u
	ux
	ibnd
	beta
	gamma
	ires
	comm

	u
	nbkpts
	xbkpts
	npoly
	npts
	x
	uinit
	npde
	npts
	x
	u
	comm

	acc
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ACC_IN_DOUBT
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INTERNAL_ERROR
	NE_NOT_STRICTLY_INCREASING
	NE_REAL
	NE_REAL_2
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_NOT_WRITE_FILE
	NE_NOT_CLOSE_FILE
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

